INSTALLATION MANUAL

PART 2 of 2

 D-Drive Wall Controller
 DDI-15

Installation Manual for D-Drive Wall Control
This manual should be read in conjunction with Installation Manual D-Drive Door Operator (PART 1 of 2)

Chamberlain Australia Pty Ltd	Chamberlain New Zealand Ltd
Unit 1, 75 Epping Rd	17B Arrenway Drive, Rosedale

Chamberlain New Zealand Ltd 17B Arrenway Drive, Rosedale

Auckland
Ph: 0800653667
www.grifco.co.nz

WARNING: THESE ARE IMPORTANT SAFETY INSTRUCTIONS.
 FOLLOW ALL INSTRUCTIONS AS INCORRECT INSTALLATION CAN LEAD TO SEVERE INJURY OR DEATH SAVE these instructions

These wall controllers have been designed and tested to offer safe service provided it is installed, operated, maintained and tested in strict accordance with the instructions and warnings contained in this manual.

This document is the installation manual for the wall control of the D-Drive operator. The following warnings need to be considered for the complete system installation:

When you see this Safety Symbol and Signal Words on the following pages, they will alert you to the possibility of serious injury or death if you do not comply with the warnings that accompany them. The hazard may come from something mechanical.

- Sticking or binding doors must be repaired. Commercial doors, door springs, pulleys, brackets and their hardware are under extreme tension and can cause serious personal injury. Do not attempt to loosen, move or adjust them. Call for commercial door service.
- Do not wear rings, watches or loose clothing while installing or servicing a commercial door operator.
- To avoid serious personal injury from entanglement, remove all ropes connected to the commercial door before installing the door operator.
- After the installation a final test of the full function of the system and the full function of the safety devices must be done.
- When operating a biased-off switch, make sure that other persons are kept away.
- The operator cannot be used with a driven part incorporating a wicket door (unless the operator cannot be operated with the wicket door open).
- Operator may become hot during operation. Appropriate clearance and/or shielding should be supplied by the installer to ensure any cabling, wiring and/or other items cannot come in contact with the operator. If temperature rise exceeds $50^{\circ} \mathrm{C}$ all fixed wiring insulation must be protected, for example, by insulating sleeving having an appropriate temperature rating.
- Do not allow children to play with operator wall controls or remote controls. Keep remote controls away from children.
- Permanently fasten all supplied labels adjacent to the wall control as a convenient reference and reminder of safe operating procedures.
- Disengage all existing commercial door locks to avoid damage to commercial door. Install the wall control (or any additional push buttons) in a location where the commercial door is visible during operation. Do not allow children to operate push button(s) or remote transmitter(s). Serious personal injury from a closing commercial door may result from misuse of the operator.
- Activate operator only when the door is in full view, free of obstructions and operator is properly adjusted. No one should enter or leave the building while the door is in motion.
- The actuating member of a biased-off switch is to be located within direct sight of the door but away from moving parts. Unless it is key operated, it is to be installed at a minimum height of 1500 mm and not accessible to the public.
- Make sure that people who install, maintain or operate the door follow these instructions. Keep these instructions in a safe place so that you can refer to them quickly when you need to.
- This appliance is not intended for use by persons (including children) with reduced physical, sensory or mental capabilities, or lack of experience and knowledge, unless they have been given supervision or instruction concerning use of the appliance by a person responsible for their safety. Children should be supervised to ensure that they do not play with the appliance.
- Use the operator for its intended purpose. This product is for indoor use use only.
- Automatic Drive - Keep away from the area of the door as it may operate unexpectedly.
- Ensure that entrapment when operating the door in the open direction is avoided. If the operator is installed at a height less than 2.5 metres from floor level or any other level from which the operator can be accessed (eg mezzanine) the installer is responsible to fit guards as appropriate to prevent access to moving mechanisms to reduce risk of entrapment.

When you see this Safety Symbol and Signal Words on the following pages, they will alert you to the possibility of serious injury or death if you do not comply with the warnings that accompany them. The hazard may come from electric shock.

- If the supply cord is damaged, it must be replaced by the manufacturer, its service agent or similarly qualified persons in order to avoid a hazard.
- Installation and wiring must be in compliance with your local building and electrical codes. Connect the power supply cord only to properly earthed mains.
- Moisture and water can destroy the electronic components. Make sure under all circumstances that water moisture or storage moisture cannot penetrate the electronics. The same applies for openings and cable entries.
- An electrician must disconnect electric power to the commercial door operator before making repairs or removing covers.

[^0]
2. CONTENTS

1. SAFETY INSTRUCTIONS 3
2. CONTENTS 4-5
3. GENERAL INTRODUCTION 6
3.1 KIT PRODUCT NUMBERING 6
3.2 APPLICABLE OPERATOR KITS 6
4. DDI-15 WALL CONTROLLER 7-14
4.1 HOW TO OPEN THE ENCLOSURE 7
4.2 DIMENSIONS 7
4.3 INSTALLATION CLEARANCES 7
4.4 DDI-15 CONTROL BOARD OVERVIEW 8
4.5 INPUT OUTPUT OVERVIEW. 9
4.6 WIRING 10-14
4.6.1 MAINS WIRING TO WALL CONTROLLER 10
4.6.2 MOTOR WIRING TO OPERATOR 10
4.6.3 MOTOR WIRING TO WALL CONTROLLER 11
4.6.4 ENCODER WIRING TO WALL CONTROLLER - OPERATORS WITH NO SOLENOID BRAKE 11
4.6.5 ENCODER WIRING TO WALL CONTROLLER - OPERATORS WITH SOLENOID BRAKE 12
4.6.6 ENCODER AND SOLENOID BRAKE RECTIFIER WIRING AT OPERATOR 12
4.6.7 SAFETY BRAKE WIRING - OPERATORS WITH MECHANICAL SAFETY BRAKE 13
4.6.8 SAFETY BRAKE WIRING - OPERATORS WITHOUT MECHANICAL SAFETY BRAKE 13
4.6.9 FERRITE INSTALLTION 14
4.6.10 COMPLETING SETUP 14
5. ENTRAPMENT PROTECTION DEVICES 15-17
5.1 GENRAL INFORMATION 15
5.1.1 COMPATIBLE GRIFCO ENTRAPMENT PROTECTOR DEVICES 15
5.1.2 SAFETY BEAM WIRING AND CONFIGURATION - FUNCTIONAL TEST 15
5.2 SAFETY BEAM WIRING 16
5.2.1 SINGLE PB008 - DDI-15 16
5.2.2 DUAL PB008 - DDI-15 16
5.2.3 SINGLE AND DUAL PB060 - DDI-15 16
5.3 SINGLE LIGHT CURTAIN GLCPS - DDI-15 17
5.4 SAFETY BUMP EDGE BMSE\#K - DDI-15 17
6. RECEIVERS - ACCESS CONTROL - AUTO/MANUAL WIRING 18
6.1 RECEIVER WIRING 18
6.2 ACCESS CONTROL WIRING 18
6.3 AUTO/MANUAL KEYSWITCH CONTORL WIRING 18
7. ADDITIONAL AUXILIARY WIRING 19-20
7.1 ON BOARD RELAYS 19
7.2 EXPANSION BOARDS 19
7.3 WARNING LIGHTS AND SOUNDERS 20
7.4 TRAFFIC LIGHT 20

2. CONTENTS

8. ESSENTIAL PROGRAMMING INFORMATION 21
8.1 ESSENTIAL INFORMATION 21
8.2 SERVICE SWITCH 21
8.3 INFORMATION CODES 21
9. INITIAL COMMISSIONING 22
9.1 INITIAL CONTROLLER SET-UP AND LIMIT SETTINGS 22
10.0 ADVANCED COMMISSIONING 23-24
10.1 timing out 23
10.2 ENTERING BASIC PARAMETER CHANGE MODE 23
10.3 ENTERING ADVANCED PARAMETER CHANGE MODE 23
10.4 ACTIVATIONG ENTRAPMENT PROTECTION DEVICES 23
10.5 DOOR BEHAVIOUR SET-UP 24
10.6 AUTO-CLOSE SET-UP 24
11.0 RESET OPTIONS 25
11.1 SOFT RESET 25
11.2 FACTORY RESET 25
11.1 FORCED FACTORY RESET 25
12.0 ADVANCED OPTIONS 26-29
12.1 SPEED SETTINGS 26-27
12.1 PROGRAMMABLE INPUT SET-UP. 28
12.2 PROGRAMMABLE OUTPUT SET-UP 29
12.3 SETTING UP A MID-LIMIT POSITION 29
10. GENERAL INFORMATION 30
11. COMMON PROGRAM PARAMETERS 31
12. COMMON INFORMATION E CODES 32
13. COMMON INFORMATION F CODES 33-36
14. INFORMATION MESSAGES 37
15. WARRANTY 38-40
18.1 CYCLE COUNT AND MAXIMUM CURTAIN LIFT WEIGHT. 38-39
18.2 CHAMBERLAIN WARRANTY 40

3. GENERAL INTRODUCTION

The D-Drive Wall Controls are designed to be used with either Chain Drive Operators or Direct Drive Operators. See table below for details of Wall Control model used in the range of Operator Models.

3.1. KIT PRODUCT NUMBERING

The Kit model number is made up of 4 components to identify drive method, torque rating, nomimal output speed and type of speed controller. An example is shown below.
GDD

3.2. APPLICABLE OPERATOR KITS

Kit product is matched to a Single Speed (Contactor) or a Variable Speed (Inverter) Controller. The Kits are shown below for various torque ratings.

CHAIN DRIVE (GCD) MODELS	VARIABLE SPEED (INVERTER) CONTROLLER
WALL CONTROLLER MODEL	DDI-15
$450 N M$	GCD-45-23-VS
DIRECT DRIVE (GDD) MODELS	
WALL CONTROLLER MODEL	GDD-15
$550 N M$	GDD-75-10-VS
$750 N M$	GDD-100-10-VS
$1,000 N M$	

4.1 HOW TO OPEN THE ENCLOSURE

1. Unscrew the six Philips Head screws.
2. Gently lift the bottom of the facia away from the controller enclosure.

To close, align the fascia to the controller enclosure and install the six Philips Head screws.

4.2 DIMENSIONS

4.3 INSTALLATION CLEARANCES

The Wall Controller must be installed with a minimum 100 mm vertical distance from obstructions.

4. DDI-15 CONTROLLER

4.4 DDI-15 CONTROL BOARD OVERVIEW

4. DDI-15 CONTROLLER

4.5 INPUT OUTPUT OVERVIEW

4.6 WIRING

4.6.1 MAINS WIRING TO WALL CONTROLLER

Connect the main wiring as shown.

今

WARNING
ELECTRICAL
Power terminals A and N are spring type terminals
Care must be taken to ensure loose wire strands are not left outside of the terminal.

4.6.2 MOTOR WIRING TO OPERATOR

WARNING

ELECTRICAL

Ensure the motor terminals are configured correctly for the controller type being used as indicated in the diagrams below. Incorrect motor terminal configuration can cause damage and will void warranty.

The Operator is supplied in STAR configuration.
All operators are required to be reconfigured to Delta (as shown in the diagram)

Applicable models are:

CONTROLLER	KIT	OPERATOR
DDI-15	GCD-45-23-VS	GCDO-45-23-VS
DDI-15	GDD-55-11-VS	GDDO-55-11-VS
DDI-15	GDD-75-10-VS	GDDO-75-10-VS
DDI-15	GDD-100-10-VS	GDDO-100-10-VS

Connect wiring by:

1. Feed the motor cable through the cable gland on the side of motor control enclosure.

2. Securely connect the Earth of the motor cable to the earthing screw shown.
3. Securely connect $\mathrm{T} 1, \mathrm{~T} 2$ and T 3 of the motor cable into terminals $\mathrm{U} 1, \mathrm{~V} 1$, and W 1 respectively.
4. Bridge terminals V 2 to $\mathrm{W} 1, \mathrm{U} 2$ to V 1 , and W 2 to U 1 as shown in the diagram.

4.6.3 MOTOR WIRING TO WALL CONTROLLER

Wire motor power to the connections shown in the diagram.

Phases to T1, T2, T3 and Earth to PE
Cable shield to PE.

4.6.4 ENCODER WIRING TO WALL CONTROLLER - OPERATORS WITH NO SOLENOID BRAKE

Solenoid brakes are not used on the Operator GDDO-55-11:
For this model:
Connect the encoder cable to Pins 31 to 36 with the wire colours as shown below.

Encoder cables are supplied fitted to PCB connectors, ready to swap with the PCB connector fitted to the controller.

1. Remove the connector on the PCB and discard.
2. Fit the encoder cable connector to the PCB.

4. DDI-15 CONTROLLER

4.6.5 ENCODER WIRING TO WALL CONTROLLER - OPERATORS WITH SOLENOID BRAKE

Solenoid brakes are used on GDDO-55-11, GDDO-75-10, GDDO-100-10, GCDO-45-23 which uses the DDI-15 Wall Controller

For these models:

1. Connect one end of the internal operator solenoid brake cable to Pin 11 on the relay X14.
2. Connect the other end of the internal operator solenoid brake connection to the N of the 240VAC Auxiliary Power Output.
3. Connect a link wire between Pin 10 on the relay X14 and the L of the 240VAC Auxiliary Power Output
4. Connect the encoder cable to numbers 31 to 36 with the wire colours indicated in the diagram

Encoder cables are supplied fitted to PCB connectors, ready to swap with the PCB connector fitted to the controller.

1. Remove the connector on the PCB and discard.
2. Fit the encoder cable connector to the PCB.

4.6.6 ENCODER AND SOLENOID BRAKE RECTIFIER WIRING AT OPERATOR

All operators are factory fitted with encoder wires and solenoid brake wires connected.

For reference when using a solenoid cable spare part (EC-8 or EC-12), which includes 2 Black solenoid brake connection wires, connect these wires to the connection block marked with \sim, as shown.

Connection is not polarity sensitive.

As viewed from female side

4. DDI-15 CONTROLLER

4.6.7 SAFETY BRAKE WIRING - OPERATORS WITH MECHANICAL SAFETY BRAKE

It is recommended that a Mechanical Safety Brake is installed on all Chain Drive installations.
Refer to D-Drive Operator Manual for details on the mechanical installation of a Mechanical Safety Brake.
The actuation of a Safety Brake is required in the event of a drive chain breakage, to prevent the curtain from falling.
If using this controller in conjunction with the GCDO-45-23 chain driven operator a mechanical safety brake must be wired into E-Stop 1 on Pins 41 and 42.

Use to following connection to wire the Safety Brake to the Wall Controller:

PIN	INPUT	DESCRIPTION
42	E-Stop 1	Emergency Stop EXT 12
41	E-Stop 1	Emergency Stop EXT 11

Alternatively, the Safety Brake can be wired directly into the Encoder (on the operator side) as shown below:

1. Remove one wire from the Hauling Chain (7) and relocate to position 9.
2. Install the Safety Brake wires to position 7 and 8 .
3. Install link wire between pins 41 and 42 on the wall controller.

Note: Wire Safety Brake Switch in series with existing switches.

4.6.8 SAFETY BRAKE WIRING - OPERATORS WITHOUT MECHANICAL SAFETY BRAKE

IMPORTANT

For installation that do not require a Mechanical Safety Brake, such as Direct Drive models, or installations where the Mechanical Safety Brake has been connected via the Encoder, a link wire is required at E-Stop 1 (bridge terminals 41 and 42) to enable operation of the unit.

4. DDI-15 CONTROLLER

4.6.9 FERRITE INSTALLATION

The controller is supplied with four ferrites that must be installed to reduce EMC interference.

CABLE	COLOUR	LOCATION
Mains input power	White	At controller
Motor power	Black	Outside of controller
Motor power	White	Inside controller over 3xPhase Lines (T1/T2/T3)
Encoder cable	White	At controller

4.6.10 COMPLETING SETUP

Mains and operator wiring is now complete.
Proceed to the section for Entrapment Protection Devices or Commissioning to complete set-up.

5.1 GENERAL INFORMATION

! CAUTION

The D-Drive Wall Controllers are pre-configured to Latch Up/Latch Down behaviour and require Entrapment Protection Devices to be installed.
The default setting is for relay safety beams to be installed and connected as outlined below. If an alternate Entrapment Protection
Device is installed, the Safety Beam input will need to be disabled and the alternate device input enabled.
If no Entrapment Protection Devices are installed, the Safety Beam input will need to be disabled and Latching Behaviour re-configured. Failure to do so will result in the controller displaying information codes.
The wall controller will default to Inch Up/Inch Down mode with no Entrapment Protection devices connected and enabled.

5.1.1 COMPATIBLE GRIFCO ENTRAPMENT PROTECTION DEVICES

Compatible Grifco entrapment protection devices are:

PART NUMBER	DESCRIPTION
PB008	Universal Reflective Safety Beam Kit, including beam, reflector and 9m lead and mounting hardware
PB060	Universal Reflective PE Beam Kit, including Transmitter, receiver with 20m lead and mounting hardware
GLCPS	Grifco Light Curtain Protection System including mounting frame, beams, mounting system and 20m cable
BMSE\#\#K	Safety Edge Kit including Bi-Metal safety edge, end caps, connection cable and mounting hardware (\#\# 3.0m to 9.0 m lengths)
GPS15	Not compatible with D-Drive Wall Controllers
GPS772	Not compatible with D-Drive Wall Controllers

5.1.2 SAFETY BEAM WIRING AND CONFIGURATION - FUNCTIONAL TEST

The Wall Controller will self-test the entrapment protection device at each cycle to ensure the device is operating correctly.
For the DDI-15 Variable Speed Controller:
Output 15 (Pin 66) should be used for the wiring of an IR entrapment protection device. This output is configured to toggle momentarily once the door reaches the top limit thereby performing a functional check of the IR entrapment protection device. Parameter settings are configured by default. Check parameter P. 505 is set to 520 (Input activation), P55A set to 001 (Safety Beam Self Test) and P.70F set to 2501 (Output 15 self test) to ensure correct operation of the relay.

5.2 SAFETY BEAM WIRING

5.2.1 SINGLE PB008-DDI-15

Connect the PB008 Safety Beam as shown below.

1. Connect Yellow wire to Pin 76.
2. Connect Black wire to Pin 75 .
3. Connect Blue wire to Pin 74 .
4. Connect Brown wire to Pin 66.

5.2.2 DUAL PB008 - DDI-15

If a second set of PB008 Safety Beams are required, wire the outputs in series as described below:

1. Connect first Safety Beam Yellow wire to Pin 76.
2. Join first Safety Beam Black wire to second Safety Beam Yellow wire.
3. Connect second Safety Beam Black wire to Pin 75.
4. Connect Blue wire from both Safety Beams to Pin 74.
5. Connect Brown wire from both Safety Beams to Pin 20.
6. Connect link wire (not supplied) between Pin 21 and Pin 73.

5.2.3 SINGLE AND DUAL PB060 - DDI-15

Connect the PB060 Safety Beam receiver as per the PB008 instructions above.as shown below.
Connect the PB060 Safety Beam transmitter to the Auxiliary 24VDC output (Pins 62 and 63) as shown below.

If a second set of PB060 Safety Beams are required:

1. Connect the Blue wire of both transmitters to Pin 63.
2. Connect Brown wire from both Safety Beams to Pin 20.

DDI-15

5.3 SINGLE LIGHT CURTAIN GLCPS - DD1-15

NOTE: Prior to connecting the GLCPS Light Curtain, ensure the door is in the closed position and parameter $P .460$ is set to 6.

Connect the GLCPS Light Curtain as shown below.

1. Remove the pre-fitted terminal block from the GLCPS voltage regulator (shown Below).
2. Connect Red wire to Pin 51.
3. Connect Black wire to Pin 44.
4. Connect Yellow (or White) wire to Pin 43.
5. Refer to Commissioning for activation and set-up.

DDI-15

5.4 SAFETY EDGE BMSE\#\#K - DDI-15

Connect an $8.2 \mathrm{~K} \Omega$ resistive Safety Edge as shown below.

1. Connect one wire of the BMSE\#\#K to Pin 44.
2. Connect the other wire of the BMSE\#\#K to Pin 43.

To enable the Safety Edge input, set P. 460 to 00006 and perform a power cycle.

To disable the Safety Edge input, set P. 460 to 0000 and perform a power cycle.

DDI-15

Refer to Parameter Setting section to set-up (Ensure parametersetting P. 460 is set to 6 and perform a Power Cycle.)

6.0 RECEIVERS - ACCESS CONTROL - AUTO/MANUAL WIRING

6.1 RECEIVER WIRING

The Wall Controller does not have an onboard receiver.
A receiver such as the STAR1000 or 3-Channel Universal Receiver (Model E8003) can be installed by:

1. Connecting power to Pins 71 and 73
2. a) Connect N/O contact from the receiver to Open Only Input (Pins 51 and 52), as shown.

Enable Auto Close by installing a link wire between Pins 62 and 65 .
Default Auto Close time is set to 10s.
b) Alternatively, connect N / O contact from the receiver to Toggle Input
(Pins 72 and 73) for OPN/CLS.

If Auto Close is enabled, this will become OPEN ONLY.

6.2 ACCESS CONTROL WIRING

The Wall Controller does not have an onboard receiver.
A receiver such as the STAR1000 or 3-Channel Universal Receiver (Model E8003) can be installed by:

1. Connecting power to Pins 71 and 73
2. a) Connect N/O contact from the receiver to Open Only Input (Pins 51 and 52), as shown.

Enable Auto Close by installing a link wire between Pins 62 and 65 .
Default Auto Close time is set to 10s.
b) Alternatively, connect N/O contact from the receiver to Toggle Input (Pins 72 and 73) for OPN/CLS.
If Auto Close is enabled, this will become OPEN ONLY.

6.3 AUTO/MANUAL KEYSWITCH CONTROL WIRING

The KS112 Lock-It-Well Auto/Man keyswitch can be installed by:

1. Connect the N/C contact \#1 on the KS112 to Pin 86
2. Connect the N/C contact \#2 on the KS112 to Pin 85
3. Connect the N/O contact \#3 on the KS112 to Pin 82
4. Connect the N/O contact \#4 on the KS112 to Pin 83
5. Set Parameters P. 506 to 0402, P. 570 to 0010 and P. 571 to 0005

7.0 ADDITIONAL AUXILIARY WIRING

7.1 ON BOARD RELAYS

There are two onboard mechanical relay outputs located at the bottom edge of the board.

For DDI-15: Relay $\mathrm{X}-15$ is energised while the operator is in motion.
DDI-15: Relay X14 is energised while the operator is in motion.
For advanced configuration of these outputs (for specific applications) refer to the Advanced Parameters manual (available from Grifco on request).

7.2 EXPANSION BOARDS

If additional outputs are required, Grifco offer the following expansion board options for the D-Drive range. Please refer to the Relay Expansion Module Manual for further details

DDEB-1R

DDEB-6R

PART NUMBER	DESCRIPTION
DDEB-1R	A single relay output plug-in module
DDEB-6R	An advanced plug-in expansion board with 6 relay outputs, 1 soft output and 6 additional inputs

7.3 WARNING LIGHTS AND SOUNDERS

DDC-22, DDI-07, DDI-12, DDI-15: two onboard mechanical relay outputs located at the bottom edge of the board .
Relay $\mathrm{X}-14$ is pre-configured to be energised when the door is moving.

1. Connect GND (Pin 63) to DC - on the 24VDC Sounder or Lamp.
2. Connect 24VDC (Pin 62) To X-14 Pin 11
3. Connect $\mathrm{X}-14$ Pin 10 to DC+ on the 24VDC Sounder or Lamp.

7.4 TRAFFIC LIGHT

Relay $\mathrm{X}-14$ is pre-configured to be energised when the door is moving.
Functionality will be:

- Door CLOSED - RED ON
- Door moving - RED/GREEN alternating flash
- Door OPEN _ GREEN ON

1. Connect GND (Pin 63) to DC - on the 24VDC RED/GREEN Traffic light
2. Connect 24 VDC (Pin 62) To X-14 Pin 11
3. Connect $\mathrm{X}-14$ Pin 12 to $\mathrm{DC}+$ on the 24 VDC Green Light
4. Connect $\mathrm{X}-14$ Pin 10 to $\mathrm{DC}+$ on the 24 VDC Red Light
5. Set P. 701 to 1253

8. ESSENTIAL PROGRAMMING INFORMATION

8.0 ESSENTIAL PROGRAMMING INFORMATION

8.1 ESSENTIAL INFORMATION

1. The Variable Speed Wall Controllers are pre-configured to suit the Operator Type. The initial set-up requires the Installer to select the Operator type prior to Limit set-up.
2. When using the fascia buttons, the installer is required to press the buttons for different durations

- Short Press: Used to enter and exit parameters
- Medium Press: Used to confirm a parameter change. Approx 3 seconds or until the display stops flashing
- Long Press: Used to exit from Parameter Mode to Standby Mode. Approx 5 seconds until the display changes

3. Safety beams, Latch Up/Latch Down and Auto-Close are enabled by default. If Safety Beams are not installed, other Entrapment Protection Devices are recommended. When deactivating the Safety Beam input, ensure Latching Behaviour is reconfigured to suit the Entrapment Protection Device installed.
4. Mechanical Safety Brakes are required for Chain Driven Operators. The Mechanical Safety Brake is connected to either the Wall Controller PCB or the Operator Encoder.
5. All Installations require either the Mechanical Safety Brake connected to E-Stop 1 (Pins $41 / 42$) or a link wire must be installed.

8.2 SERVICE SWITCH

The purpose of the Service Switch is to Enable (ON) (by default) or Disable (OFF) the high level advanced Parameter settings via the facia buttons.

The Service Switch DIP switch can be found on the board, shown below.

DDI-15 BETWEEN PIN 81 AND 76

. CAUTION

Set Service Switch to OFF to avoid tampering of settings.

8.3 INFORMATION CODES

The following messages may be displayed before Initial Set-up or after. The Information Codes will alert the user to activated inputs.

CODE	DESCRIPTION	
E. 105	Safety Beam faulty, not connected, obstructed or mis-aligned	Check Safety beam. If no beam, installed Disable Input
F. 211	External Safety Brake or Wire Link (Pin 41/42) not connected	Check Mechanical Safety Brake. If no brake, check Link Wire
F. 212	Hand Chain Engaged, Motor Thermal or Mechanical Safety Brake (if connected to Encoder)	Check Hand Chain and Mechanical Safety Brake (if wired to the encoder)
E. 360	Safety Edge or Light Curtain not configured	Check the Bump edge or Light Curtain.
F. 369	Safety Edge or Light Curtain not configured	Check P.460 to ensure the Input is configured

9. INITIAL COMMISSIONING

9.0 INITIAL COMMISSIONING

9.1 INITIAL CONTROLLER SETUP AND LIMIT SETTINGS

For the DDC-22 Wall Controller a profile selection not required, proceed to Step 5 below to set-up the controller.

For DDI-07, DDI-12 and DDI-15 Wall Controllers proceed to Step 1

1. Energise the Wall Controller. Allow the Wall Controller to initialise and display P.991.

2. Press the STOP button briefly to enter P. 991 Parameter Setting
3. Use the UP or DOWN button to scroll through the operator options as shown below.

Operator	Operator Type	P. 991 Setting	ID Colour
GCDO-22-23	Chain Drive		Green
GCDO-45-23	Chain Drive	4555	Yellow
GDDO-22-13	Direct Drive		Green
GDDO-42-11	Direct Drive	YE母	Yellow
GDOO-55-11	Direct Drive		Red
GDDO-75-10	Direct Drive	7556	Blue
GDDO-100-10	Direct Drive		Black

4. Hold STOP for 3 seconds (until the display stops flashing) to save the operator type. The Wall Controller is Auto Configure based on the operator type selected. The display will cycle through parameters.
5. Wait until the controller automatically enters Calibration Mode, indicated by the display. This may take up to 30 seconds.

Refer to the Troubleshooting section of the manual if the Controller does not enter Calibration Mode.
6. Press STOP briefly to enter Bottom Limit setting mode.
7. Check door direction by pressing the UP button. If the door is opening, proceed to Step 8. If the door is closing:
a. Isolate power. Wait for the controller to fully power down.
b. Open the enclosure.
c. Swap the two wires connected to motor terminals T1 and T2.
d. Close the enclosure and energise.
e. Power Cycle the controller.
f. Wait until the controller automatically enters Calibration Mode, indicated by the display.
g. Press STOP briefly to enter Closed Limit Setting mode.
h. Check door direction by pressing the UP button.
8. Use the DOWN button to move the door to the desired close position.

9. Press and hold the STOP button for 3 seconds to save the setting.
10. Use the UP button to move the door to the desired open position.

11. Press and hold the STOP button for 3 seconds to save the setting.
12. Once the limits have been set, use the UP and DOWN buttons to move the door to the open and closed positions several times to ensure the door stops at the desired position.
Note: Alternatively, the motor direction can be swapped (ref Step 7) by changing setting P. 130 to 1 (0 by default).

10.0 ADVANCED COMMISSIONING

10.1 TIMING OUT

!. CAUTION

The Wall Controller will time-out from the Parameter Operation mode after 60 minutes of inactivity.
After 60 minutes of inactivity the Wall Controller will time-out, requiring the unit to be Power Reset (see below). After a power cycle, parameter setting P. 999 will need to be reset to 0003, to enable Advanced Parameter settings

10.2 ENTER BASIC PARAMETER MODE

Use the follow procedure to enter the Parameter Operation mode (limited number of parameters available).

1. Isolate power. Open the enclosure and set Service Switch to ON to enable Service Mode.
2. Close the cover of the enclosure and energise the controller.
3. Press and hold the UP and STOP buttons for 3 seconds to enter the Parameter Selection mode.
4. Use the UP and DOWN buttons to navigate though the available parameters

10.3 ENTER ADVANCED PARAMETER MODE

1. Isolate power. Open the enclosure and set Service Switch to ON to enable Service Mode.
2. Close the cover of the enclosure and energise the controller.
3. Press and hold the UP and STOP buttons for 3 seconds to enter the Parameter Selection mode.
4. Use the UP and Down buttons to navigate to P.999.
5. Press the Stop button briefly. Use the Up button to navigate to 0003
6. Press Stop for 3 seconds (or until the display stops flashing) to save the new value.
7. Press the Stop button briefly to exit.
8. Use the UP or DOWN buttons to navigate to Parameters listed in the Advanced Parameter Guide.

9. Press STOP briefly to enter the parameter.
10. Use the UP or DOWN buttons to change the value to of the parameter.
11. Press and hold the STOP button for 3 seconds to save the new value.
12. Press STOP briefly to return to Parameter Setting menu.
13. Press and hold the STOP button for 3 seconds to exit Parameter Selection Mode.

10.4 ACTIVATING ENTRAPMENT PROTECTION DEVICES

The safety beams (input 5) are activated by default.Use the following parameters settings to activate or deactivate connected Entrapment Protection Devices.
Check settings by entering Advanced Parameter.

SAFETY BEAMS PB008 and PB060 DDI-15	Activation	P. $505=0520$ (Activate Input 5) P55A $=0001$ (Activate Functional Test of Input 5) P.70F $=2501$ (Activate Output 15) P. $980=0000$ (Activate Latch Up/Latch Down behavior)
	Deactivation	P. $505=0000$ (Deactivate Input 5) P. $980=0001$ (Activate Latch Up/ Inch Down behaviour)
LIGHT CURTAIN GLCPS DDI-15	Activation	P. $460=0006$ (Autodetect Safety Edge or Light Curtain) P. $980=0000$ (Activate Latch Up/Latch Down behavior) Power Cycle to complete the activation
	Deactivation	P. $460=0000$ (Deactivate Safety Edge or Light Curtain) P. $980=0001$ (Activate Latch Up/ Inch Down behaviour) Power Cycle to complete the deactivation
BUMP EDGE BMSE\#\#K DDI-15	Activation	P. $460=0006$ (Autodetect Safety Edge or Light Curtain) P. $980=0000$ (Activate Latch Up/Latch Down behavior) Power Cycle to complete the activation
	Deactivation	P. $460=0000$ (Deactivate Safety Edge or Light Curtain) P. $980=0001$ (Activate Latch Up/ Inch Down behaviour Power Cycle to complete the deactivation

10. ADVANCED COMMISSIONING

10.5 DOOR BEHAVIOUR SETUP

By default, the controller is set to Latch Up and Latch Down mode.
If Safety beams are not installed on Input 5, the controller will display the message E.105, and the controller will be in Latch-Up / Inch-Down mode.
Navigate to Parameter setting mode by pressing and holding UP and STOP for 3 seconds.
Use the UP or DOWN buttons to navigate to P980 and press STOP briefly.
Use the UP or DOWN buttons to select the parameter. Press STOP for 3 seconds (until the display stops flashing) to confirm.

LATCH UP / LATCH DOWN (DEFAULT)	To configure the controller to Latch Up / Latch Down mode.	P. $980=0000$
LATCH UP / INCH DOWN	To configure the controller to Latch Up / Inch Down mode.	P. $980=0001$
INCH UP / INCH DOWN	To configure the controller to Inch Up / Inch Down mode.	P. $980=0002$

10.6 AUTO-CLOSE SETUP

By default, the controller is set Auto-Close after 10 seconds.
A link wire is required to bridge INPUT 10 (Pins 65/62) to enable Auto-Close.

1. Enter the Parameter Operation mode.
2. Use the UP/DOWN buttons to navigate to p.010.
3. Press the Stop button briefly. Use the Up/Down button to select the duration.
4. Press Stop for 3 seconds (or until the display stops flashing) to save the new value.
5. Press the Stop button briefly to exit.
6. Press and hold the STOP button for 3 seconds to exit Parameter Selection Mode.

11. RESET OPTIONS

11.0 RESET OPTIONS

11.1 SOFT RESET

To power cycle reset or soft reset hold 3-buttons on the front panel (UP/STOP/DOWN) for 3 seconds.

11.2 FACTORY RESET

To reset all parameters to "Factory Default" ready for initial commissioning.

1. Isolate power. Open the enclosure and set Service Switch to ON to enable Service Mode.
2. Close the cover of the enclosure and energise the controller.
3. Press and hold the UP and STOP buttons for 3 seconds to enter the Parameter Selection mode.
4. Use the UP and Down buttons to navigate to P.999.
5. Press the Stop button briefly. Use the Up button to navigate to 0003
6. Press Stop for 3 seconds (or until the display stops flashing) to save the new value.
7. Press the Stop button briefly to exit
8. Use the UP and DOWN arrows to navigate to P. 990

9. Press the Stop button briefly. Use the Up button to navigate to 0001
10. Press Stop for 3 seconds (or until the display stops flashing) to save the new setting.

11. The Display will change to PROG before changing to P.991.
12. Power Cycle to confirm Factory Reset

11.3 FORCED FACTORY RESET

To force a locked wall controller to FACTORY RESET and reset all parameters to "Factory Default" ready for initial commissioning.

1. Isolate power. Open the enclosure and set Service Switch to ON to enable Service Mode, and close the cover of the enclosure.
2. Press and hold the UP button while energising the controller.
3. Use the UP and Down buttons to navigate to P.999.
4. Press the Stop button briefly. Use the Up button to navigate to 0003
5. Press Stop for 3 seconds (or until the display stops flashing) to save the new value.
6. Press the Stop button briefly to exit
7. Use the UP and DOWN arrows to navigate to P. 990
8. Press the Stop button briefly. Use the Up button to navigate to 0001
9. Press Stop for 3 seconds (or until the display stops flashing) to save the new setting.
10. The Display will change to PROG before changing to P.991.
11. Power Cycle to confirm Factory Reset

12. ADVANCED OPTIONS

12.0 ADVANCED OPTIONS

12.1 SPEED SETTINGS

The speed settings of the variable speed inverter controllers DDI-07, DDI-12 and DDI-15 can be adjusted as shown by the Parameter Settings in the graphs below.

By default, the OPEN SPEED is set to 60 Hz and the CLOSE SPEED is set to 40 Hz .

12.1 SPEED SETTINGS

Opening Direction	Acceleration Ramp up from CLOSED position	P. 312	Smaller values will increase the time taken to reach opening speed Larger values will decrease the time taken to reach opening speed
	Opening Speed	P. 310	Smaller values will decrease the speed of the door during opening speed Larger values will increase the speed of the door during opening speed
	Deceleration Ramp down	P. 322	Smaller values will increase the time taken to reach slow speed Larger values will decrease the time taken to reach slow speed
	Slow Speed	P. 320	Smaller values will decrease the speed of the door during slow speed Larger values will increase the speed of the door during slow speed
	Ramp to Stop at OPEN Position	P. 343	Smaller values will increase the time taken to slow the door to stop at the OPEN position Larger values will decrease the time taken to slow the door to stop at the OPEN position
	Slow Position Start	P. 232	Smaller values will increase the time the door is running at opening speed, and reduce the time to slow to the OPEN position Larger values will decrease the time the door is running at opening speed, and increase the time to slow to the OPEN position
Closing Direction	Acceleration Ramp up from OPEN position	P. 352	Smaller values will increase the time taken to reach closing speed Larger values will decrease the time taken to reach closing speed
	Closing Speed	P. 350	Smaller values will decrease the speed of the door during closing speed Larger values will increase the speed of the door during closing speed
	Deceleration Ramp down	P. 362	Smaller values will increase the time taken to reach slow speed Larger values will decrease the time taken to reach slow speed
	Slow Speed	P. 360	Smaller values will decrease the speed of the door during slow speed Larger values will increase the speed of the door during slow speed
	Ramp to Stop at CLOSED position	P. 383	Smaller values will increase the time taken to slow the door to stop at the CLOSED position Larger values will decrease the time taken to slow the door to stop at the CLOSED position
	Slow Position Start	P. 222	Smaller values will increase the time the door is running at closing speed, and reduce the time to slow to the CLOSED position Larger values will decrease the time the door is running at closing speed, and increase the time to slow to the CLOSED position

12.2 SETTING UP A PROGRAMMABLE INPUT

Select the Input number that you wish to use from the table below.

INPUT	PIN	PARAMETER	DDI DEFAULT
1	52	$P .501$	0101
2	53	$P .502$	0402
3	54	$P .503$	0701
4	72	$P .504$	0201
5	75	$P .505$	0520
6	82	$P .506$	0301
7	65	$P .508$	0601
8	64	$P .507$	0802
9	65	1003	
10	64		

Select the programmable Input Profile from the table below.

VALUE	FUNCTION	VALUE	FUNCTION
0000	OFF (disable input)	0701	CLOSE with clearance timer
0101	OPEN to full open position, with auto close and pre-warning delay (if set). N/O Contact	0801	CLOSE with pre-warning delay (if set). N/O Contact
0102	OPEN to optional mid-limit position (if set) with auto close and pre-warning delay (if set). N/O Contact	0802	INTERLOCK IN CLOSED POSITION. No deadman INTERLOCK in closed position. Deadman override possible.
0106	OPEN2 to full open position from inside, with auto close \& clearance timers	0903	BYPASS Mid Limit
0110	OPEN1 to full open position from outside, with auto close \& clearance timers	1001	DISABLE auto close time
0201	IMPULSE open \& close (reversing closing) with auto close \& clearance timers	1003	Disable intermediate stop, NO contact
0301	Permanent-OPEN, NO contact, 1. Intermediate stop 2. OPEN, without hold open time, without clearance time, both directions	1004	DISABLE commands from outside
0402	Stop-command, N/O contact	1405	PHOTOCELL stop \& reverse during opening, pause when closing
0501	PHOTOCELL stop \& reverse when closing	1422	SAFETY EDGE stop \& when opening. Suitable for 8k2 Input only (e.g. Input 10)
0520	Safety: Reversing when CLOSING, NO contact, with testing in end position OPEN	1612	SAFETY EDGE free ride when opening. Suitable for 8k2 Input only (e.g. Input 10)
061	Manual operation for OPENING and CLOSING, NO contact	1801	LOOP1 Loop detector parameter p.66x

10. ADVANCED OPTIONS

12.3 SETTING UP A PROGRAMMABLE OUTPUT

Select the Output number that you wish to use from the table below.

OUTPUT	PIN	PARAMETER	DDI DEFAULT
1	$\mathrm{X} 14-10,11,12$	P.701	3201
2	$\mathrm{X} 15-20,21,22$	P.702	3201
15	$\mathrm{X} 24-66$	P.70F	2501

Select the programmable Relay (Output) Profile from the table below.

VALUE	FUNCTION	VALUE	FUNCTION
0000	OFF (disable)	1101	Energise Maglock in closed position
0001	ON (permanently)	1102	Energise Maglock in closed position and during closing
0101	OPEN position	1201	GREEN traffic light - mounted inside
0201	CLOSED position	1210	GREEN traffic light - mounted outside
0401	no faults/errors - system OK	RED traffic light - mounted inside	
0501	Courtesy light with 10 sec of delay	1255	RED traffic light - mounted outside
0701	Flashing during opening and closing	1701	Testing in CLOSED position
0703	ON during opening and closing	2501	Testing in OPEN position
0801	ON during operating and closing and parameter warning/clearance times	3201	BRAKE function

Refer to the Advanced Parameters manual (available on request from Grifco) for a full list of settings and functions.

12.4 SETTING A MID-LIMIT POSITION

An optional mid-limit can be set as per the table below:

PARAMETER	RANGE	DESCRIPTION
P.241	$5 \%-95 \%$	This parameter adjusts the mid-limit position as a percentage of the fully open position
P.244	N/A	This parameter uses preset mid-limit positions
	50% OPEN	$0000-$ no mid-limit
	66% OPEN	$0001-50 \%$ of the fully open position
		$002-66 \%$ of the fully open position

Once a mid-limit has been set, an input must be programmed to open the door to that mid-limit.
e.g. to program Input 5 (Pins 51/52) to open to the mid-limit, set P501 to setting 0102

13．GENERAL STATUS MESSAGES

GENERAL MESSAGES	
STOP	Stop／Reset state，wait for next incoming command
＿Ec＿	Lower limit position
三Ec	Lower limit position locked \rightarrow raising not possible（e．g．，lock－door）
ZUF＠	Closing active
－Eo－	Upper limit position
三Еo三	Upper limit position locked \rightarrow closing not possible（e．g．，safety edge）
＠OPE	Opening active
CLS＠	Closing active
－E1－	Middle limit position E1（intermediate stop position）
三E1	Upper limit position \rightarrow locked closing not possible（e．g．，safety edge）
FAIL	Fault \rightarrow only deadman travel is possible，automatic opening may also be possible
＂CALI：	Calibration \rightarrow setting the limit positions in deadman travel mode（for absolute encoder）\rightarrow Start procedure using STOP key
三NA三	E－stop \rightarrow Travel not possible，hardware safety chain interrupted
HdSA：	E－travel \rightarrow Deadman travel without regard for safety facilities，etc．
＇Hd＇	Manual \rightarrow Deadman mode
ParA	Parametrization
SYNC：	Synchronization（incremental encoder／limit switch \rightarrow Pos．unknown）
＇Au＇	Automatic \rightarrow indicates change from＂Manual＂to＂Automatic＂status
＇Hc＇	Semi automatic \rightarrow indicates change from＂Manual＂to＂Semi－automatic＂
WU：	First display after switching on（Power Up and Self－test）
	STATUS MESSAGES DURING CALIBRATION
E．i．E．c．：	Calibration of the lower limit position requested（in deadman travel）
E．i．E．o．：	Calibration of the lower limit position requested（in deadman travel）
E．i．E． 1	Calibration of intermediate position E1（in deadman travel）
	STATUS MESSAGES DURING SYNCHRONIZATION：
S．y．E．c．：	Synchronization of lower limit position requested（deadman or wait for starting condition）
S．y．E．o．	Synchronization of lower upper position requested（deadman or wait for starting condition）
S．y．E． 1	Synchronization of intermediate stop position E1（in deadman mode）
S．y．op：	Automatic opening up to mechanical stop，then automatic synchronization of upper limit position
S．y．cL	Automatic closing taking into account safeties up to mechanical stop，followed by automatic synchronization of lower limit position
S．y．c $=$	Automatic closing is locked due to request \AA
	STATUS MESSAGES DURING DEADMAN MOVEMENT：
Hd．cL	Deadman closing（membrane key：CLOSE）
Hd．oP	Deadman closing（membrane key：OPEN）
Hd．Eu	Lower limit position reached，no further deadman closing possible
Hd．Eo	Upper limit position reached，no further deadman opening possible
Hd．Ao	Outside of permitted Eo position（no deadman opening possible）
INFORMATION MESSAGES DURING THE PARAMETER CONFIGURATION：	
noEr	Error memory：no error saved
Er－－	Error memory：if error but without associated message being found
Prog	Programming message while carrying out original parameter or default set

14. COMMON PROGRAM PARAMETERS

SETTING	CODE	DESCRIPTION	ADVANCED PARAMETER
Door Cycle Counter	P. 000	The content of this parameter indicates the number of previously counted cycles.	
Maintenance Counter	P. 005	The content of this parameter indicates the number of cycles remaining until maintenance is due.	
Auto Close Timer	P. 010	The door is held at the open limit for the set time. The door is then automatically closed. NOTE: A wire link is required at INPUT 10 (bridge terminals 65 and 62) to enable auto close.	
Boost for OPEN	P. 140	The boost increases the output voltage and thus the power in the lower speed range until the cut-off frequency (P.100) is reached. Range of boost is from 0% to 30%.	
Limit Setting	P. 210	This parameter is used to start a new teaching of the end positions. The corresponding end positions are moved to in deadman mode after activating the procedure and saved by holding down the Stop key. Select from the following settings: 0 : Cancel, no end positions are taught. 1: Limit switch Lower, limit switch Upper and if appropriate limit switch Intermediate Stop are taught. 2: Limit switch Upper and if appropriate limit switch Intermediate Stop are taught. 3: Limit switch Lower and limit switch Upper are taught. 4: Limit switch Intermediate Stop is taught. 5: All limit switches and the turn direction are taught.	
Bottom Limit Adjust	P. 221	Correction of Closed Limit position. Range from -125 to +125 - = Lower + = Higher	
Top Limit Adjust	P. 231	Correction of Open Limit position. Range from -60 to +60	
Open Travel Speed	P. 310	Opening speed in Hz. (NOTE: Setting to more than 75 Hz will reduce power and the life of the operator and controller)	
Close Travel Speed	P. 350	Closing speed in Hz. (NOTE: Setting to more than 75 Hz will reduce power and the life of the operator and controller)	
Safety Bump Edge	P. 460	Ensure this is set to 6 for use with a Safety Edge. If this is set to 0 the Safety Edge will be deactivated	YES
Input Settings	P. 501 - P. 50 F	Input Parameter settings for Input 1 through to 15.	YES
Output Settings - On board Relays	P. 701 - P702	Output Parameter settings for the onboard mechanical relays at 10, 11, 12 and 20, 21, 22. See Advanced Parameters manual for further configuration options	YES
Output Settings Soft and Expansion	P. 703 - P.70F	Output Parameter settings for soft outputs 3 through to 15.	YES
Inch/Latch Mode	P. 980	This parameter is used to set the operating mode for the controller. 0 . OPEN and CLOSE move in self-holding (latch up and down) 1. OPEN move in self-holding, CLOSE move in manual mode (latch up, inch down) 2. OPEN and CLOSE move in Manual mode (deadman - inch up and down) 3. Deadman emergency operation NOTE: All safety devices and limit switches are ignored. See P. 010 for Auto Close setting	
Factory Reset	P. 990	Set to 1 to perform a reset of the controller to factory settings	YES
Advanced Parameters	P. 999	Set to 3 for Advanced Parameter Selection mode	

GENERAL MESSAGES	
E. 000	OPEN key on membrane keypad
E. 050	STOP key on membrane keypad
E. 090	CLOSE key on membrane keypad
E. 101	Input 1 Pin 52 open is activated
E. 102	Input 2 Pin 53 open is activated
E. 103	Input 3 Pin 54 open is activated
E. 104	Input 4 Pin 72 open is activated
E. 105	Input 5 Pin 75 open is activated
E. 105	Input 6 Pin 82 open is activated
E. 106	Input 7 Pin 85 open is activated
E. 107	Input 8 Pin 61 open is activated
E. 108	Input 9 Pin 64 open is activated
E. 110	Input 10 Pin 65 open is activated
	SAFETY/EMERGENCY STOP CHAIN
E. 211	External E-Stop 1 tripped
E. 212	External E-Stop 2 tripped
	SAFETY EDGE IN GENERAL
E. 360	Triggering of the safety edge
E363	Internal safety edge faulty
E. 370	Triggering of the safety edge
E. 373	External safety edge fault
E. 379	External safety edge activated but not yet plugged in
E. 380	Triggering of the safety edge
E. 383	Interruption of the safety edge
E.3F0	Triggering of the safety edge
E.3F3	Interruption of the safety edge
	INDUCTIVE LOOP
E. 501	Detector channel 1
E. 502	Detector channel 2
E. 503	Detector channel 3
E. 504	Detector channel 4

CODE	DESCRIPTION	REASON FOR ERROR AND FIX
F. 000	Door position too far up	- Too small a parameter value for upper emergency limit switch \rightarrow increase P. 239 - Upper limit switch range (limit switch band) too small \rightarrow increase P. 233 - Mechanical brake defective or improperly set
F. 005	Outside door position too far down	- Too small a parameter value for lower emergency limit switch \rightarrow increase P. 229 - Lower limit switch range (limit switch band) too small \rightarrow increase P. 223 - Mechanical brake defective or improperly set
F. 020	Run time exceeded (during opening, closing or deadman)	- Current motor run time has exceeded set maximum run time (P. 410 (Opening), P. 415 (Closing), P. 419 (Deadman move)), door may be sticking or is blocked. - Door is blocked - If using mechanical limit switches, one may not have tripped
F. 030	Lag error (position change of the door is less than expected)	- Door or motor is blocked - Insufficient power for providing necessary torque - Too little speed - Mechanical limit switch was not left or is defective - Incremental or absolute encoder shaft is slipping - Wrong positioning system selected (P.205) - One motor phase is missing - The brake does not release - \quad Settings of the failure detecting time are not correct (P. 430 or P.450)
F. 031	Detected rotational direction deviates from expected	- When using incremental encoders: Channel A and B reversed - Motor rotation direction reversed compared with calibration setting \rightarrow teach in the limits new (P. $210=5$) - Too much „pancaking" when starting, brake releases too soon, or too little torque, adjust boost (P. 140 or P.145) as necessary.
F. 211	External E-Stop 1 tripped	- E-Stop chain was interrupted starting at Input 1 - Check possible Safety Brake activation - Check manual hauling chain engagement - Check external safety brake or wire link on Pins 41 and 42
F. 212	External E-Stop 2 tripped	- E-Stop chain was interrupted starting at Input 2 - Check possible Safety Brake activation - Check kostal encoder operation
F. 360	Redundancy error with short circuit	- Short circuit detected on edges with normally closed contact - The light beam of the optical edge is interrupted - Jumper for 1 K 2 / 8K2 is wrong set
F. 361	Number of trips of the Safety input D, normally this is the integrated safety edge evaluation, has reached set limit (configurable in P.46E)	- Parameterized, maximum number of trips of the safety input D during a door cycle was exceeded \rightarrow To reset close the door - In deadman mode - Check the set number of trips in P.46E
F. 362	Redundancy error with short circuit	- One of the processing channels for short circuit detection does not react identically with the second channel \rightarrow Controller - board defective, if no other error message $F .3 x x$ is shown - Dynamical optical safety edge connected but not set in Parameter P. 460
F. 363	Interruption on edge input	- Connection cable defective or not connected - Termination resistor incorrect or missing - Jumper 1K2 / 8K2 incorrectly set
F. 364	Safety edge - testing failed	- Safety edge was not activated as expected when requesting a test. - The time between request for testing and actual testing not in agreement - The pre-limit switch is set incorrectly
F. 365	Redundancy error with interruption	- One of the processing channels for interruption detection does not react identically with the second channel \rightarrow Controller - Board defective, if no other error message F.3xx is shown - Dynamic optical system connected but not set in Parameter P. 460

CODE	DESCRIPTION	REASON FOR ERROR AND FIX
F. 366	Too high a pulse frequency for optical safety edge	- Defective optical safety edge - Defective input for internal safety edge
F. 369	Internal safety edge incorrectly parameterized	- An internal safety edge is connected but deactivated \rightarrow set P. 460 to the used edge type
F.36A	Redundancy error of the 8K2 slipdoor switch on the internal safetyedge evaluation unit	- One of the contacts of the redundant 8 k 2 slip door switch is defective - The slip door was not fully opened or closed
F. 371	Number of trips of the Safety inputE, normally this is the integrated safety edge evaluation, has reached set limit (configurable in P.47E)	- Parameterized, maximum number of trips of the safety input E during a door cycle was exceeded \rightarrow To reset close the door - In deadman mode - Check the set number of trips in P.47E
F. 372	Redundancy error with short circuit	- One of the processing channels for short circuit detection does not react identically with the second channel. - Controller board defective
F. 373	Fault in the safety edge (message comes from module)	- Cable break to safety edge, no edge connected, edge termination resistor incorrect or defective - Jumper for termination resistor definition in wrong position. - Safety edge processing selected with Parameter P.470, but module not plugged in or wrong module.
F. 374	Safety edge - testing failed	- Pre-limit switch for safety edge incorrectly set or defective - Processing module defective - Safety edge defective
F. 379	Safety edge detection defective (coding pin or parameter setting)	- No module plugged in but was reported as present by a parameter - The controller was started up with another module than the one currently plugged in
F.37A	Redundancy error of the 8 K 2 slip door switch on the internal safetyedge evaluation unit channel 1	- One of the contacts of the redundant 8 k 2 slip door switch is defective - The slip door was not fully opened or closed
F. 410	Over-current (motor current or DC-bus)	- Wrong motor data set (P. 100 - P.103) - Non-adjusted voltage increase / boost set(P. 140 or P.145) - Motor not properly dimensioned for door - Door sticks
F. 420	Overvoltage in DC-bus Limit 1	- Brake chopper interference / defective / missing - Feed voltage much to high - Motor is generating excessive voltage - brake chopper cannot dissipate the re-generated energy.
F. 425	Overvoltage line supply	- The supply voltage for the controller is to high
F. 426	Undervoltage line supply	- The supply voltage for the controller is to low
F. 430	Temperature heat sink outside of working range Limit 1	- Excessive load on power stage or brake chopper - Ambient temperature too low for controller operation - Clock frequency of power stage too high (Parameter P.160)
F. 435	Housing temperature high	- The temperature inside the controller housing is to high
F. 440	Overcurrent in DC-bus Limit 1	- Boost not adjusted - Motor incorrectly dimensioned for door - Door sticks
F. 510	Motor / DC-bus overcurrent Limit 2	- Wrong motor data set (P.100-P.103) - Non-adjusted voltage increase / boost set (P. 140 or P.145) - Motor not properly dimensioned for door - Door sticks

CODE	DESCRIPTION	REASON FOR ERROR AND FIX
F. 511	No DC supply	- The DC voltage cannot be given to the motor (overcurrent error, IGBT error F.519, 24 V error or over temperature) - The emergency stop is activated
F. 512	Offset motor current / link current incorrect	- Hardware faulty
F. 515	Motor protection function detected overcurrent	- Incorrect motor curve (motor rated current) set (P.101) - Too much boost (P. 140 or P.145) - Motor incorrectly dimensioned
F. 519	IGBT driver chip detected overcurrent	- Short circuit or ground fault on motor terminals - Motor rated current setting extremely wrong (P.100) - Extremely too much boost (P. 140 or P.145) - Motor incorrectly dimensioned - Motor winding defective - Momentary interruption of the E-Stop circuit.
F. 520	Overvoltage in DC-bus Limit 2	- Brake chopper interference / defective / missing - Incoming mains voltage much to high - Motor is generating excessive voltage - brake chopper cannot dissipate the re-generated energy
F. 521	Low voltage in DC-bus	- Input voltage supply too low, usually at load - Load too great / final stage or brake chopper fault
F. 524	ext. 24 V supply missing or too low	- Overload but no short circuit - When 24 V is shorted the controller voltage does not ramp up and glow lamp V306 comes on.
F. 525	Heatsink temperature outside of working range Limit 2	- Excessive load on final stages or brake chopper - Ambient temperature too low for controller operation - Clock frequency of final stage too high (Parameter P.160)
F. 535	Housing temperature high	- The temperature inside the controller housing is to high
F. 540	Overcurrent in DC-bus Limit 2	- Boost not adjusted - Motor incorrectly dimensioned for door - Door sticks
F. 700	Position sensing defective	- With mechanical limit switches: - At least one limit switch does not correspond to the configured active status. - An implausible combination of at least 2 active limit switches.For electronic limit switches: - After invoking activation of the factory parameters (Parameter P.990) the corresponding positioning system was not parameterized. - Calibration not completed or is incorrect and must be repeated. - When activating the intermediate stop the intermediate stop is implausible. - Synchronization not finished or reference switch defective.
F. 752	Loss of communication with encoder	- Interface cable defective / interrupted - Channel A and B connected over cross - Absolute encoder processor electronics defective - Defective hardware or electrically noisy environment - Use a shielded control cable - Install a RC element $(100 \Omega+100 \mathrm{nF})$ at the brake
F. 760	Position outside of window	- Position encoder drive defective - Absolute encoder processing electronics defective - Defective hardware or electrically noisy environment
F. 763	DES-B Error	- Position encoder drive defective -> make a reset

16. COMMON INFORMATION F CODES

CODE	DESCRIPTION	REASON FOR ERROR AND FIX
F. 910	No communication to expansion board possible	- The communication to the expansion board is not possible - No expansion board plugged in - CAN Connection interrupted (Broken cable or no supply voltage for extension board)
F. 911	ROM error on extension board	- Wrong Flash-Code - Defective hardware or noise-saturated environment
F. 912	RAM error on extension board	- Defective hardware or noise-saturated environment
F. 920	Internal 2.5 V reference voltage incorrect	- Hardware defect
F. 921	Internal 15 V voltage incorrect	- Hardware defect
F. 922	E-Stop chain not complete	- Not all E-STOP inputs are separately jumpered although the entire E-Stop chain is jumpered - Redundant checking of the E-Stop chain tripped
F. 925	Testing of the third shutdown method failed	- Defective hardware
F. 928	Faulty input testing	- The testing of an cyclic tested input was not successful - The connected device is not working - The cable connection between the connected device and the controller is broken
F.92A	If the motor wiring test is activated by P. 112 the wiring will be tested during system tests.	- min. one of the motor cables is not good or nor connected - Motor cable damaged - Motor damaged
F. 930	External watchdog incorrect	- Defective hardware or noise-saturated environment
F. 931	ROM error	- Wrong EPROM code - Defective hardware or noise-saturated environment
F. 932	RAM error	- Defective hardware or noise-saturated environment
F. 933	Wrong frequency of CPU	- The clock frequency of the processor is wrong
F. 935	Stack error	- User-Stack or System-Stack overflowed - Possible software error due to recursive invocations (e.g. profile)
F. 942	RAM Error of I/O Processor	- RAM Error of I/O Processor
F. 960	Faulty parameter checksum	- New EPROM version with different parameters - Controller not yet initialized
F. 961	Checksum from calibration values etc.	- New EPROM version with different EEPROM structure - Controller not yet initialized
F. 962	Converter parameters not plausible	- New EPROM version - Controller not yet initialized
F. 964	Program version / manufacturer code	- New EPROM version - Controller not yet initialized
F. 965	Faulty door cycle counter with active emergency opening	- The door cycle counter does not count or is faulty. Because of this no emergency opening testing can be done.
F. 966	Hardware unknown	- A wrong software was programmed to the controller - The programmed software does not know the hardware version - The controller hardware is broken
F. 968	Programming error with Real time clock	- The clock is not programmed plausible
F. 969	Internal error Real time clock	- The clock has an error \rightarrow make a reset
F. 970	Plausibility parameter block error	- New EPROM version - Controller not yet initialized - Some parameter is implausible - Controller incompatibile with Operator

CODE	DESCRIPTION
1.021	Emergency open test is running
1.080	Service counter will run off
1.100	Speed in open position to high
1.150	Speed in close position to high
1.160	Permanent open command still active
I. 161	Priority still active
1.170	Forced opening active
1.180	Wait for foil key command
1.185	Wait for reset by stop foil key
1.199	Door counter wrong
1.200	New reference position taken over
I. 201	Reference position new initialized
1.205	Synchronisation done
1.210	Limit switch not plausible
1.211	Limit switch not plausible
1.310	Open command to door 2
1.320	Obstacle during opening
1.325	Obstacle during closing
1.360	Disturbed N.C. safety edge
1.363	Disturbed N.O. safety edge
1.380	Faulty 2nd internal N.C. safety bar
1.383	Faulty 2nd internal N.O. safety bar
1.510	Correction drive finished
1.515	Active correction drive
1.520	Target speed for opening or closing move not reached Pre-limit switch reached before full speed was reached --> adjust ramps Current limiter prevents movement at full speed --> Inverter or motor working at performance limit --> adjust ramps or limiter
1.555	Measuring rotation factor not ready
1.610	Light line alignment completed successfully.
1.620	Door in PU when syncing but some rays of light are still masked. Adjust P. 446 door masking in PU!
1.621	The resolution of the installed position encoder is too low to maintain robust light curtain operation. More increments are required per door move. (Message only occurs when DIP-Switch is ON.)
1.700	In timer limit switch operating mode (typ. after power on) the door position is not available. Deadman speed is maintained until the actual position becomes available again.
1.856	The internal safety edge is tripped because of an WiCab radio problem The radio connection interrupts during door drive for a short time. Possible causes are: - The distance between mobile and stationary unit is larger than specified - No perfect orientation of stationary and mobile antenna - The radio link is disturbed by external noise

18.1 CYCLE COUNT AND MAXIMUM CURTAIN LIFTS

Grifco warrants the performance for Low Cycle and High Cycle Applications which do not exceed the total maximum operation cycles per 24 month period from purchase, maximum cycles per hour and maximum curtain weights for particular drum diameters, shown in the tables below.

TABLE 1: LOW CYCLE OPERATORS	DRIVE RATIO	MAXIMUM OPERATION CYCLES PER 24 MTHS	$\begin{aligned} & \text { MAXIMUM } \\ & \text { CYCLES } \\ & \text { PER HR } \end{aligned}$	MAXIMUM LIFTING CAPACITY [KG] DRUM DIAMETER			
				165MM	168MM	219MM	273MM
GDD-42-11-SS		15,000	10	338	333	267	220
GDD-55-11-SS		15,000	10	443	436	349	289
GDD-75-10-SS		15,000	10	603	595	476	394
GDD-100-10-SS		15,000	5	805	793	635	525
GDD-140-9-SS		15,000	5	1,126	1,110	889	735
GDD-22-13-VS		15,000	10	177	174	140	115
GDD-42-11-VS		15,000	10	338	333	267	220
GDD-55-11-VS		15,000	10	443	436	349	289
GDD-75-10-VS		15,000	10	603	595	476	394
GDD-100-10-VS		15,000	5	805	793	635	525
GCD-45-23-SS See Notes	3.0	15,000	10	1,086	1,070	858	709
GCD-22-23-VS See Notes	3.0	15,000	10	531	523	419	346
GCD-45-23-VS See Notes	3.0	15,000	10	1,086	1,070	858	709
GCD-45-23-SS See Notes	3.8	15,000	10	1,376	1,356	1,086	898
GCD-22-23-VS See Notes	3.8	15,000	10	673	663	531	439
GCD-45-23-VS See Notes	3.8	15,000	10	1,376	1,356	1,086	898
GCD-45-23-SS	4.5	15,000	3	1,548	1,525	1222	1010
GCD-45-23-VS	4.5	15,000	3	1,548	1,525	1222	1010
SAFETY BRAKE							
GSB-547		100,000	30	450	442	355	283
GSB-1017		100,000	30	997	979	800	635
GSB-1892		100,000	30	1990	1954	1499	1217

18.1 CYCLE COUNT AND MAXIMUM CURTAIN LIFTS

TABLE 2: HIGH CYCLE OPERATORS		DRIVE RATIO	MAXIMUM OPERATION CYCLES PER 24 MTHS	MAXIMUM CYCLES PER HR	MAXIMUM LIFTING CAPACITY [KG] DRUM DIAMETER				
		165MM			168MM	219MM	273MM		
GDD-42-11-SS				50,000	20	265	261	209	173
GDD-55-11-SS			50,000	20	350	344	276	228	
GDD-75-10-SS			50,000	20	459	452	362	299	
GDD-100-10-SS			50,000	10	563	555	445	367	
GDD-140-9-SS			50,000	10	788	777	623	514	
GDD-22-13-VS			50,000	20	135	133	106	88	
GDD-42-11-VS			50,000	30	265	261	209	173	
GDD-55-11-VS			50,000	20	350	344	276	228	
GDD-75-10-VS			50,000	20	459	452	362	299	
GDD-100-10-VS			50,000	10	563	555	445	367	
GCD-45-23-SS	See Notes	3.0	50,000	20	796	784	628	519	
GCD-22-23-VS	See Notes	3.0	50,000	20	404	398	319	263	
GCD-45-23-VS	See Notes	3.0	50,000	30	796	784	628	519	
GCD-45-23-SS	See Notes	3.8	50,000	20	1,008	993	796	657	
GCD-22-23-VS	See Notes	3.8	50,000	20	511	504	404	334	
GCD-45-23-VS	See Notes	3.8	50,000	30	1,008	993	796	657	
SAFETY BRAKE									
GSB-547			100,000	30	450	442	355	283	
GSB-1017			100,000	30	997	979	800	635	
GSB-1892			100,000	30	1990	1954	1499	1217	

Notes:

1. Lifting weights are calculated for 23 mm single-wall profiles and includes a friction co-efficient of 20% (Lifting weight is reduced if door has windlock clips).
2. Ensure the lifting capacity of the Safety brake, paired with the operator, is not exceeded.
3. Lifting Capacity is reduced if the stated number of Cycles per hour is exceeded.
4. Contact Grifco for operational requirements in excess of the maximum performances shown in the tables.

TM Trademark of The Chamberlain Group LLC
® Registered Trademark of The Chamberlain Group LLC
© 2023 The Chamberlain Group LLC

17.2 CHAMBERLAIN WARRANTY

Limited Warranty in Australia and New Zealand

1. Your consumer rights and guarantees

This Limited Warranty is provided by Chamberlain Australia Pty Ltd. Chamberlain New Zealand Limited (Chamberlain), contact details in Section 5 below. This Limited Warranty applies to a Grifco® Commercial unit (Unit) purchased in Australia and New Zealand, and gives you benefits which are in addition to your consumer rights and remedies under the Australian Consumer Law (or corresponding New Zealand consumer protection laws).
You can find out more information about your consumer rights and guarantees which the law provides in Australia at www.accc.gov.au. in New Zealand at www.consumerprotection.govt.nz. We also provide this statement as required under the Australian Consumer Law:

Our goods come with guarantees that cannot be excluded under the Australian Consumer Law. You are entitled to a replacement or refund for a major failure and for compensation for any other reasonably foreseeable loss or damage. You are also entitled to have the goods repaired or replaced if the goods fail to be of acceptable quality and the failure does not amount to a major failure.

2. What does our Limited Warranty cover?

Chamberlain warrants that, when purchased new in Australia or New Zealand. the Unit (all parts of the Unit other than globes and batteries) is free from defects in materials and workmanship (Limited Warranty) for the Limited Warranty period. subject to the terms and conditions of this Limited Warranty
The Limited Warranty period (for Accessories see below) is 2 years (24 months) from the date of purchase or when a recommended cycle count for the purchased operator has been reached (which ever comes first)
The Limited Warranty period for remote controlled transmitters and accessories included with the Unit (Accessories) is 12 months from the date of purchase.
The Limited Warranty for genuine spare parts is free from defects in material and workmanship for a period of 6 months from date of purchase.

3. Limited Warranty Conditions

The following terms and conditions apply to your Limited Warranty:

- our Limited Warranty is effective from date of purchase as indicated in Section 2 above;
- proof of purchase of the Unit is required;

Please also see the User Manual for the Unit available on our website. or provided at the time of purchase.

4. What is not covered

- Batteries and globes are not covered under the Chamberlain Limited Warranty.
- Travel costs incurred by Chamberlain or its authorised dealer in either travelling to and from areas outside a capital city area. These costs will be at the purchaser's expense.
- Additional access costs incurred by Chamberlain or its authorised dealer in obtaining access to premises where the Unit is not readily accessible. These costs will be at the purchaser's expense.
Our Limited Warranty covers defects as explained, and does not cover all problems and mishaps that may occur in relation to the Unit including:
- you got what you asked for but simply changed your mind, found it cheaper somewhere else, decided you did not like the purchase or had no use for it;
- you misused the Unit in any way that caused the problem;
- you knew of or were made aware of any deficiencies with the Unit before date of purchase;
- use of the Unit with controls or third party devices or software which has not been supplied. or pre-approved, by Chamberlain;
- problems relating to or residing in third party hardware, software or other items with which our product is used;
- any loss of data related to you or provided by you, or loss related to downtime associated with use of the product whether through power outage, failure of internet or wireless connectivity, network disruptions. or otherwise;
- non-compliance with the relevant instructions in the User Manual;
- tampering, neglect abuse, wear and tear, accident, electrical storm, excessive use or conditions other than normal use;

[^0]: When you see this Signal Word on the following pages, it will alert you to the possibility of damage to your commercial door and/or the commercial door operator if you do not comply with the cautionary statements that accompany it.

